Page 236 - 201907
P. 236

·1482·                            精细化工   FINE CHEMICALS                                  第 36 卷

             [6]  Sahu S C, Samantara A K, Seth M, et al. A facile electrochemical   Rubber/IFR composites[J]. Materials, 2018, 11(6): 1005-1018.
                 approach  for  development  of  highly  corrosion  protective  coatings   [17]  Wang N, Gao H Y, Zhang J, et al. Effect of graphene oxide/ZSM-5
                 using  graphene  nanosheets[J].  Electrochemistry  Communications,   hybrid  on  corrosion  resistance  of  waterborne  epoxy  coating[J].
                 2013, 32(32): 22-26.                               Coatings, 2018, 8(5): 179-192.
             [7]  Zhao Shuhua (赵书华), Huang Congming (黄从明), Wang Shuli (王  [18]  ASTM  D4541-02:Standard  test  method  for  pull-off  strength  of
                 树立),  et al.  Review  on  epoxy  composite  coatings  with  graphene   coatings  using  portable  adhesion  testers[S].Philadelphia:ASTM,
                 oxide [J]. Corrosion Science and Protection Technology (腐蚀科学  2002.
                 与防护技术), 2018, 30(5): 552-556.                 [19]  Wang  X, Lin K S,  Chan J C,  et al.  Direct synthesis and catalytic
             [8]  Aneja K S, Bohm S, Khanna A S, et al. Graphene based anticorrosive   applications  of  ordered  large  pore  aminopropyl-functionalized
                 coatings for Cr(Ⅵ) replacement[J]. Nanoscale, 2015, 7(42): 17879-   SBA-15 mesoporous materials[J]. Journal of Physical Chemistry B,
                 17888.                                             2005, 109(5): 1763-1769.
             [9]  Li  J,  Cui  J,  Yang  J,  et al.  Silanized  graphene  oxide  reinforced   [20]  Zhai Qingzhou (翟庆洲), Wang Qi (王琪), Zhang Xiaoxia (张晓霞).
                 organofunctional  silane  composite  coatings  for  corrosion   Preparation  and  characterization of  methylated  SBA-15 molecular
                 protection[J]. Progress in Organic Coatings, 2016, 99: 443-451.    sieves[J].  Journal  of  the  Chinese  Ceramic  Society  (硅酸盐学报),
             [10]  Balaskas A C, Kartsonakis I A, Tziveleka L A, et al. Improvement of   2009, 37(4): 531- 535.
                 anti-corrosive  properties  of  epoxy-coated  AA  2024-T3  with  TiO 2   [21]  Zhu Huayue (朱华跃), Xiao Ling (肖玲). Moist heat treatment and
                 nanocontainers  loaded  with  8-hydroxyquinoline[J].  Progress  in   analysis of both FTIR spectra and XRD spectra of chitosan-gelatin
                 Organic Coatings, 2012, 74(3): 418-426.            blend  films[J].  Journal  of  Zhejiang  Ocean  University:  Natural
             [11]  Ruhi G, Bhandari H, Dhawan S K. Designing of corrosion resistant   Science (浙江海洋学院学报:  自然科学版), 2006, (3): 301- 304.
                 epoxy  coatings  embedded  with  polypyrrole/SiO 2  composite[J].   [22]  And  M  K,  Jaroniec  M,  Kochang  H,  et al.  Characterization  of  the
                 Progress in Organic Coatings, 2014, 77(9): 1484-1498.     porous  structure  of  SBA-15[J].  Biomed  Research  International,
             [12]  Rashvand  M,  Ranjbar  Z.  Effect  of  nano-ZnO  particles  on  the   2000, 12(7): 945-953.
                 corrosion  resistance  of  polyurethane-based  waterborne  coatings   [23]  Zhang  J  T,  Hu  J  M,  Zhang  J  Q,  et al.  Studies  of  water  transport
                 immersed  in  sodium  chloride  solution  via  EIS  technique[J].   behavior  and  impedance  models  of  epoxy-coated  metals  in  NaCl
                 Progress in Organic Coatings, 2013, 76(10): 1413-1417.     solution  by  EIS[J].  Progress  in  Organic  Coatings,  2004,  51(2):
             [13]  Wang N, Fu W, Zhang J, et al. Corrosion performance of waterborne   145-151.
                 epoxy  coatings  containing  polyethylenimine  treated  mesoporous-   [24]  Shinde  V  P.  Study  of  water  transport  characteristics  of  poly(o-
                 TiO 2 nanoparticles on mild steel[J]. Progress in Organic Coatings,   ethylaniline)  coatings:  Corrosion  mechanism[J].  Ionics,  2017,
                 2015, 89: 114-122.                                 24(2): 1-11.
             [14]  Wang N, Wu Y H, Cheng K Q, et al. Investigation on anticorrosion   [25]  Szociński  M,  Darowicki  K,  Schaefer  K.  Identification  and
                 performance  of  polyaniline-mesoporous  MCM-41  composites  in   localization  of  organic  coating  degradation  onset  by  impedance
                 new  water-based  epoxy  coating[J].  Materials  &  Corrosion,  2015,   imaging[J]. Polymer Degradations & Stability, 2010, 95(6): 960- 964.
                 65(10): 968-976.                              [26]  Wang  N,  Cheng  K,  Wu  H,  et al.  Effect  of  nano-sized  mesoporous
             [15]  Li  Z,  González  A  J,  Heeralal  V  B,  et al.  Covalent  assembly  of   silica  MCM-41  and  MMT  on  corrosion  properties  of  epoxy
                 MCM-41  nanospheres  on  graphene  oxide  for  improving  fire   coating[J]. Progress in Organic Coatings, 2012, 75(4): 386-391.
                 retardancy and mechanical property of epoxy resin[J]. Compos, Part   [27]  Erfaghi H, Farzam M, Zaarei D, et al. The effect of MIO pigments on
                 B: Eng, 2017, 138: 101–112.                        corrosion  resistance  and  adhesion  of  synthetic  rubber-based
             [16]  Wang  N,  Zhang  M,  Kang  P,  et al.  Synergistic  effect  of  graphene   primer[J]. Journal of Coatings Technology & Research, 2017, 15(7):
                 oxide  and  mesoporous  structure  on  flame  retardancy  of  nature   1-12.


            (上接第 1433 页)                                           degradation  of  rhodamine  B  under  visible  light[J].  Industrial  &
                                                                   Engineering Chemistry Research, 2014, 54(1): 153-163.
            [8]   Jahan  M,  Bao  Q,  Loh  K  P.  Electrocatalytically  active  graphene-   [14]  Yuan  X,  Wang  H,  Wu  Y,  et al.  One-pot  self-assembly  and
                 porphyrin MOF composite for oxygen reduction reaction[J]. Journal   photoreduction  synthesis  of  silver  nanoparticle-decorated  reduced
                 of the American Chemical Society, 2012, 134(15): 6707-6713.     graphene  oxide/MIL-125(Ti)  photocatalyst  with  improved  visible
            [9]   Li Y, Pi Y, Wu L, et al. Facilitation of the light-induce Fenton-like   light  photocatalytic  activity[J].  Applied  Organometallic  Chemistry,
                 excitation of H 2O 2 via heterojunction of g-C 3N 4/NH 2-iron terephthalate   2016, 30(5): 289-296.
                 metal-organic framework for MB degradation[J]. Applied Catalysis   [15]  Sha Z,  Chan H S O,  Wu J.  Ag 2CO 3/UiO-66(Zr)  composite  with
                 B: Environmental, 2017, 202: 653-663.
            [10]  Feng D, Gu Z Y, Li J R, et al. Zirconium-metalloporphyrin PCN-222:   enhanced  visible-light  promoted  photocatalytic  activity  for  dye
                 mesoporous  metal-organic  frameworks  with  ultrahigh  stability  as   degradation[J]. Journal of Hazardous Materials, 2015, 299: 132-140.
                 biomimetic  catalysts[J].  Angewandte  Chemie  International  Edition,   [16]  Gao  S,  Liu  W,  Shang  N,  et al.  Integration  of  a  plasmonic
                 2012, 51(41): 10307-10310.                        semiconductor  with  a  metal–organic  framework:  A  case  of
            [11]  Huang W, Jing C, Zhang X, et al. Integration of plasmonic effect into   Ag/AgCl@ZIF-8  with  enhanced  visible  light  photocatalytic
                 spindle-shaped  MIL-88A(Fe):  Steering  charge  flow  for  enhanced   activity[J]. RSC Adv, 2014, 4(106): 61736-61742.
                 visible-light  photocatalytic  degradation  of  ibuprofen[J].  Chemical   [17]  Liu  N,  Huang  W,  Zhang  X,  et al.  Ultrathin  graphene  oxide
                 Engineering Journal , 2018, 349: 603-612.         encapsulated  in  uniform  MIL-88A(Fe)  for  enhanced  visible  light-
            [12]  Ai  L,  Zhang  C,  Li  L,  et al.  Iron  terephthalate  metal–organic   driven  photodegradation  of  RhB[J].  Applied  Catalysis  B:
                 framework: Revealing the effective activation of hydrogen peroxide   Environmental, 2018, 221: 119-128.
                 for the degradation of organic dye under visible light irradiation[J].   [18]  Zhou T, Zhang G, Zhang H, et al. Highly efficient visible-light-driven
                 Applied Catalysis B: Environmental, 2014, 148-149: 191-200.     photocatalytic  degradation  of  rhodamine  B  by  a  novel  Z-scheme
            [13]  Zhang  C,  Ai  L,  Jiang  J.  Graphene  hybridized  photoactive  Iron   Ag 3PO 4/MIL-101/NiFe 2O 4  composite[J].  Catalysis  Science  &
                 terephthalate  with  enhanced  photocatalytic  activity  for  the   Technology, 2018, 8(9): 2402-2416.
   231   232   233   234   235   236   237   238   239   240   241