Page 165 - 《精细化工》2020年第3期
P. 165
第 3 期 梁紫薇,等: Li 4 Ti 5 O 12 /Fe 3 O 4 复合材料的制备及其电化学性能 ·583·
3 结论 [9] HUANG S H, WEN Z Y, ZHU X J, et al. Research on Li 4Ti 5O 12/
Cu xO composite anode materials for lithium-ion batteries[J]. Journal
of the Electrochemical Society, 2005, 152(7): A1301-A1305.
采用简单绿色的水热法制备了 Li 4 Ti 5 O 12 /Fe 3 O 4
[10] ZHU J P, YANG G, ZHAO J J, et al. Synthesis and electrochemical
纳米复合材料,制备的新型复合材料利用了 Fe 3 O 4 properties of Li 4Ti 5O 12/CuO anode material for li-ion batteries[J].
的高容量,Li 4 Ti 5 O 12 的高热稳定性和结构稳定性。 Advanced Materials Research, 2011, 279: 77-82.
[11] GUO Q J, WANG Q, CHEN G, et al. Moltensalt synthesis of
虽然纯相 Fe 3 O 4 粒径较大,显示出较差的循环稳定 transition metal oxides doped Li 4Ti 5O 12 as anode material of
性,但是合成的 Li 4 Ti 5 O 12 /Fe 3 O 4 复合材料显示出较 lithium-ion battery[J]. ECS Transactions, 2016, 72(9): 11-23.
[12] HONG J E, OH R G, RYU K S. Li 4Ti 5O 12/ Co 3O 4 composite for
好的球形结构且粒径较小,电化学性能较优,其首
improved performance in lithium-ion batteries[J]. Electrochem Soc,
圈放 电比容量 达到了 550.5 mA·h/g ,相 对纯 2015, 162(10): A1978-A1983.
Li 4 Ti 5 O 12 的比容量(208.8 mA·h/g)高很多,且在 [13] GUO Q J, LI S Y, WANG H, et al. Molten salt synthesis of
nano-sized Li 4Ti 5O 12 doped with Fe 2O 3 for use as anode material in
100 次循环充电/放电过程后其放电比容量仍能达到 the lithium-ion battery[J]. RSC Advances, 2014, 4: 60327-60333.
470.2 mA·h/g,容量保持率达到 83.9%,远大于 Fe 3 O 4 [14] WANG B F, CAO J, LIU Y, et al. Improved capacity and rate
材料的容量保持率(7.1%)。Li 4 Ti 5 O 12 /Fe 3 O 4 复合材 capability of Fe 2O 3 modified Li 4Ti 5O 12 anode material[J]. Alloys
Compd, 2014, 587(2): 21-25.
料在 1.0 C、2.0 C 以及 5.0 C 下的放电比容量分别达 [15] WANG Q F, LIU M W, MIAO J, et al. Graphitized carbon and
到 0.5 C 下放电比容量的 95.5%、79.2%和 66.7%, graphene modified Fe 2O 3/Li 4Ti 5O 12 as anode material for lithium ion
batteries[J]. Surf Interface Anal, 2017, 49(1): 63-70.
显示出比纯相 Li 4 Ti 5 O 12 更好的倍率性能。其不仅解
[16] LEI D N, YE H, LIU C, et al. Interconnected ultra small V 2O 3 and
决了 Li 4 Ti 5 O 12 容量低、高倍率下性能差的问题,而 Li 4Ti 5O 12 particles construct robust interfaces for long-cycling anodes of
且也解决了 Fe 3 O 4 循环能力差的问题,对于提高下 lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019,
11(33): 29993-30000.
一代锂离子电池的倍率循环性能和解决电动汽车等
[17] ZHOU G M, WANG D W, LI Feng, et al. Graphene-wrapped Fe 3O 4
大规模储能系统等容量低、倍率性能差的问题具有 anode material with improved reversible capacity and cyclic stability
重要意义。 for lithium ion batteries[J]. Chemistry of Materials, 2010, 22(18):
5306-5313.
[18] ZHAO X Y, XIA D G, ZHENG K. Fe 3O 4/Fe/carbon composite and its
参考文献: application as anode material for lithium-ion batteries[J]. ACS
[1] MA Jian (马建), LIU Xiaodong (刘晓东), CHEN Yisong (陈轶嵩), Applied Materials & Interfaces, 2012, 4(3): 1350- 1356.
et al. Current status and countermeasures for China’s new energy [19] LV P P, ZHAO H L, ZENG Z P, et al. Facile preparation and
automobile industry and technology development[J]. China Journal electrochemical properties of carbon coated Fe 3O 4 as anode material
of Highway and Transport (中国公路学报), 2018, 31(8): 1-19. for lithium-ion batteries[J]. Journal of Power Sources, 2014, 259: 92-97.
[2] HUA Zheng (华政), LIANG Feng (梁风), YAO Yaochun (姚耀春). [20] ZHAO J P, YANG B J, ZHENG Z M, et al. Facile preparation of
Status and development trend for battery of electric vehicles[J]. one-dimensional wrapping structure: graphene nanoscroll-wrapped of
Chemical Industry and Engineering Progress (化工进展), 2017, Fe 3O 4 nanoparticles and its application for lithium-ion battery[J].
36(8): 2874-2881. ACS Applied Materials & Interfaces, 2014, 6(12): 9890-9896.
[3] YU Xiaolin (于小林), WU Xianming (吴显明), DING Xinxiong (丁 [21] LI B J, CAO H Q, SHAO J, et al. Enhanced anode performances of
心雄 ), et al. Preparation and electrochemical performances of the Fe 3O 4-carbon-rGO three dimensional composite in lithium ion
Li 4Ti 5O 12-C composite materials[J]. Fine Chemicals (精细化工), batteries[J]. Chemical Communications, 2011, 47(37): 10374-10376.
2018, 35(7): 1216-1220. [22] LIU J Y, SHEN Y, CHEN L, et al. Carbon coated Li 4Ti 5O 12 nanowire
[4] TAN Yi (谭毅), XUE Bing (薛冰). Research progress on lithium with high electrochemical performance under elevated temperature[J].
titanate as anode material in lithium-ion battery[J]. Journal of Electrochimica Acta, 2015, 156: 38-44.
Inorganic Materials (无机材料学报), 2018, 33(5): 475-482. [23] HAO T, HAO L, YANG T Y, et al. Fabrication of core-shell,
[5] CAI R, YU X, LIU X Q, et al. Li 4Ti 5O 12/Sn composite anodes for yolk-shell and hollow Fe 3O 4@carbon microboxes for high-performance
lithium-ion batteries: Synthesis and electrochemical performance [J]. lithium-ion batteries[J]. Materials Chemistry Frontiers, 2017, (1):
Journal of Power Sources, 2010, 195(24): 8244-8250. 823-830.
[6] SIVASHANMUGAM A, GOPUKUMAR S, THIRUNAKARAN [24] NAKAHARA K, NAKAJIMA R, MATSUSHIMA T, et al.
R, et al. Novel Li 4Ti 5O 12/Sn nano-composites as anode material for Preparation of particulate Li 4Ti 5O 12 having excellent characteristics
lithium ion batteries[J]. Materials Research Bulletin, 2011, 46(4): as an electrode active material for power storage cells[J]. Journal of
492-500. Power Sources, 2003, 117(1/2): 131-136.
[7] XIONG L Z, HE Z Q, YIN Z L, et al. Preparation and [25] YAO X L, XIE S, NIAN H Q, et al. Spinel Li 4Ti 5O 12 as a reversible
characterization of SnO 2-Li 4Ti 5O 12 composite by sol-gel technique[J]. anode material down to 0 V[J]. Journal of Alloys & Compounds,
Transactions of the Nonferrous Metals Society of China, 2010, 2008, 465(1): 375-379.
20(S1): 267-270. [26] BRANDT A, WINTER F, KLAMOR S, et al. An investigation of the
[8] WANG J S, ZHAO F, CAO J, et al. Enhanced electrochemical electrochemical delithiation process of carbon coated α-Fe 3O 4
performance of Cu 2O-modified Li 4Ti 5O 12 anode material for nanoparticles[J]. Journal of Materials Chemistry A, 2013, (A1):
lithium-ion batteries[J]. Ionics, 2015, 21(8): 2155-2160. 11229-11236.