Page 63 - 《精细化工》2020年第12期
P. 63

第 12 期              罗晓菲,等:  多孔材料在催化 CO 2 与环氧化物环加成反应中的研究进展                               ·2425·


                 the chemical fixation of CO 2 into cyclic carbonates[J]. Coordination   applications: A toolbox for robust and  multifunctional MOF
                 Chemistry Reviews, 2020, 408: 213173-123216.      materials[J]. Chemical Society Reviews, 2018, 47(23): 8611-8638.
            [62]  WU Y F, SONG X H, LI S, et al. 3D-monoclinic M-BTC MOF (M=   [72]  JIANG Z R, WANG H W, HU Y L,  et al. Polar group and defect
                 Mn, Co, Ni) as highly efficient catalysts for chemical fixation of CO 2   engineering in a metal-organic framework: Synergistic promotion of
                 into cyclic carbonates[J]. Journal of Industrial and Engineering   carbon dioxide sorption and conversion[J]. ChemSusChem, 2015,
                 Chemistry, 2018, 58: 296-303.                     8(5): 878-885.
            [63]  GUO F. A novel 2D Cu (Ⅱ)-MOF as a heterogeneous catalyst for the   [73]  WU  Y F, SONG  X H,  ZHANG J  H,  et al.  Mn-based MOFs as
                 cycloaddition reaction of epoxides and CO 2 into cyclic carbonates[J].   efficient catalysts for catalytic conversion of carbon dioxide into
                 Journal of Molecular Structure, 2019, 1184: 557-561.     cyclic carbonates and DFT studies[J]. Chemical Engineering Science,
            [64]  AKIMANA E, WANG J C, LIKHANOVA N V, et al. MIL-101 (Cr)   2019, 201: 288-297.
                 for CO 2 conversion into cyclic carbonates, under solvent and co-catalyst   [74]  GUPTA A K, GUHA N, KRISHNAN S, et al. A three-dimensional
                 free mild reaction conditions[J]. Catalysts, 2020, 10(4): 453-464.     Cu (Ⅱ)-MOF with Lewis acid-base dual functional sites for chemical
            [65]  ZANON A,  CHAEMCHUEN S, MOUSAVI B,  et al. Zn-doped   fixation of  CO 2  via  cyclic carbonate synthesis[J]. Journal of CO 2
                 ZIF-67 as catalyst for the CO 2 fixation  into cyclic carbonates[J].   Utilization, 2020, 39: 101173-101180.
                 Journal of CO 2 Utilization, 2017, 20: 282-291.     [75]  KIM G H, KURISINGAL J F, GU Y J, et al. CAU-11-COOH with a
            [66]  KURISINGAL J F, RACHURI Y, GU Y, et al. Binary metal-organic   V-shaped linker as a catalyst for the solvent-free synthesis of cyclic
                 frameworks: Catalysts for the efficient solvent-free CO 2 fixation   carbonates from CO 2 and epoxides[J]. Journal of Nanoscience  and
                 reaction  via cyclic carbonates synthesis[J]. Applied Catalysis A:   Nanotechnology, 2020, 20(2): 752-759.
                 General, 2019, 571: 1-11.                     [76]  NOH J, KIM  Y, PARK H,  et al. Functional group effects on  a
            [67]  WU Y F, SONG X H, XU S Q, et al. Chemical fixation of CO 2 into   metal-organic framework catalyst for CO 2 cycloaddition[J]. Journal
                 cyclic carbonates catalyzed by bimetal mixed MOFs: The role of the   of Industrial and Engineering Chemistry, 2018, 64: 478-483.
                 interaction between Co and Zn[J]. Dalton Transactions, 2020, 49(2):   [77]  DEMIR S, USTA S, TAMAR H, et al. Solvent free utilization and
                 312-321.                                          selective coupling of epichlorohydrin with carbon  dioxide over
            [68]  KURUPPATHPARAMBIL R R, JOSE  T, BABU R,  et al. A room   zirconium metal-organic frameworks[J]. Microporous and Mesoporous
                 temperature synthesizable and environmental friendly heterogeneous   Materials, 2017, 244: 251-257.
                 ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of   [78]  CAI T T, LIU J  X, CAO H,  et al. Synthesis of  bio-based cyclic
                 cyclic carbonates[J]. Applied Catalysis B: Environmental, 2016, 182:   carbonate from vegetable oil methyl ester by CO 2 fixation with
                 562-569.                                          acid-base pair MOFs[J]. Industrial Crops and Products,  2020, 145:
            [69]  MOUSAVI B, CHAEMCHUEN S,  MOOSAVI B,  et al. Zeolitic   112155-112163.
                 imidazole framework-67 as an efficient heterogeneous catalyst for   [79]  LIN Y F, HUANG K W, KO  B T,  et al. Bifunctional ZIF-78
                 the conversion of CO 2 to cyclic  carbonates[J]. New Journal of   heterogeneous catalyst with  dual Lewis acidic and basic sites for
                 Chemistry, 2016, 40(6): 5170-5176.                carbon dioxide fixation via cyclic carbonate synthesis[J]. Journal of
            [70]  ZHOU Z, YANG L, WANG Y F, et al. Recent advance on chemical   CO 2 Utilization, 2017, 22: 178-183.
                 fixation  of carbon dioxide by metal-organic frame-works as   [80]  LI B Y, ZHANG Y M, MA D X, et al. Metal-cation-directed de Novo
                 heterogeneous catalysts[J]. Current Organic Chemistry, 2018, 22(18):   assembly of a functionalized guest molecule in the nanospace of a
                 1809-1824.                                        metal-organic framework[J]. Journal of the American  Chemical
            [71]  KIRCHON A, FENG L, DRAKE H F, et al. From fundamentals to   Society, 2014, 136(4): 1202-1205.


            (上接第 2405 页)                                           学版), 2019, 39(4): 77-86.
                                                               [55]  ALONGI J, POSKOVIC M, FRACHE A,  et al. Novel flame
            [49]  GAO Y A, LI Z H, DU J M, et al. Preparation and characterization of   retardants containing cyclodextrin nanosponges and phosphorus
                 inclusion complexes of  β-cyclodextrin with ionic  liquid[J].   compounds to enhance EVA combustion  properties[J]. Polymer
                 Chemistry-A European Journal, 2005, 11(20): 5875-5880.     Degradation and Stability, 2010, 95(10): 2093-2100.
            [50]  WANG  B B, QIAN X D, SHI Y Q,  et al. Cyclodextrin   [56]  ALONGI J, POSKOVIC M, VISAKH P M,  et al. Cyclodextrin
                 microencapsulated ammonium polyphosphate: Preparation and  its   nanosponges as  novel green flame retardants  for  PP, LLDPE and
                 performance on the thermal, flame retardancy  and mechanical   PA6[J]. Carbohydrate Polymers, 2012, 88(4): 1387-1394.
                 properties of ethylene vinyl acetate copolymer[J]. Composites Part B:   [57]  LAI X J, ZENG X  R, LI H Q,  et al.  Synergistic effect  of
                 Engineering, 2015, 69: 22-30.                     phosphorus-containing nanosponges on intumescent flame-retardant
            [51]  DING S, LIU P, ZHANG S M, et al. Preparation and characterization   polypropylene[J]. Journal of Applied Polymer Science, 2012, 125(3):
                 of cyclodextrin microencapsulated ammonium polyphosphate and its   1758-1765.
                 application in flame retardant polypropylene[J]. Journal of Applied   [58]  ENESCU D, ALONGI G, FRACHE A. Evaluation of nonconventional
                 Polymer Science, 2020, 137(34): 49001-49014.      additives as fire retardants on polyamide 6, 6: Phosphorous-based
            [52]  WANG B B (汪碧波). Preparation of core-shell microencapsulated   master batch, α-zirconium dihydrogen phosphate, and β-cyclodextrin
                 expanded flame retardants and study  on properties of crosslinked   based nanosponges[J]. Journal of Applied Polymer Science, 2011,
                 flame retardant vinyl acetate copolymer[D]. Hefei: University of   123(6): 3545-3555.
                 Science and Technology of China (中国科学技术大学), 2012.     [59]  TROTTA F,  ZANETTI M, CAVALLI R. Cyclodextrin-based
            [53]  WANG W, PENG Y, CHEN H,  et al. Surface  microencapsulated   nanosponges as drug carriers[J]. Beilstein Journal of Organic
                 ammonium polyphosphate with beta-cyclodextrin and its application   Chemistry, 2012, 8(1): 2091-2099.
                 in wood-flour/polypropylene composites[J]. Polymer Composites,   [60]  FABRIZIO C, MARIA T, ROBERTA C,  et al.  Evolution of
                 2017, 38(10): 2312-2320.                          cyclodextrin nanosponges[J]. International Journal of Pharmaceutics,
            [54]  WEN Y F (文玉峰), HE P Z (何璞祯), MA  X P (马晓谱),  et al.   2017, 531(2): 470-479.
                 Research progress of microencapsulation of flame retardants in flame   [61]  SHERJE A P, DRAVYAKAR B R, KADAM D, et al. Cyclodextrin-
                 retardant modification of polymers[J]. Journal of Beijing Institute of   based nanosponges: A  critical review[J]. Carbohydrate  Polymers,
                 Fashion Technology: Natural Science) (北京服装学院学报:  自然科  2017, 173: 37-49.
   58   59   60   61   62   63   64   65   66   67   68