Page 63 - 《精细化工》2020年第12期
P. 63
第 12 期 罗晓菲,等: 多孔材料在催化 CO 2 与环氧化物环加成反应中的研究进展 ·2425·
the chemical fixation of CO 2 into cyclic carbonates[J]. Coordination applications: A toolbox for robust and multifunctional MOF
Chemistry Reviews, 2020, 408: 213173-123216. materials[J]. Chemical Society Reviews, 2018, 47(23): 8611-8638.
[62] WU Y F, SONG X H, LI S, et al. 3D-monoclinic M-BTC MOF (M= [72] JIANG Z R, WANG H W, HU Y L, et al. Polar group and defect
Mn, Co, Ni) as highly efficient catalysts for chemical fixation of CO 2 engineering in a metal-organic framework: Synergistic promotion of
into cyclic carbonates[J]. Journal of Industrial and Engineering carbon dioxide sorption and conversion[J]. ChemSusChem, 2015,
Chemistry, 2018, 58: 296-303. 8(5): 878-885.
[63] GUO F. A novel 2D Cu (Ⅱ)-MOF as a heterogeneous catalyst for the [73] WU Y F, SONG X H, ZHANG J H, et al. Mn-based MOFs as
cycloaddition reaction of epoxides and CO 2 into cyclic carbonates[J]. efficient catalysts for catalytic conversion of carbon dioxide into
Journal of Molecular Structure, 2019, 1184: 557-561. cyclic carbonates and DFT studies[J]. Chemical Engineering Science,
[64] AKIMANA E, WANG J C, LIKHANOVA N V, et al. MIL-101 (Cr) 2019, 201: 288-297.
for CO 2 conversion into cyclic carbonates, under solvent and co-catalyst [74] GUPTA A K, GUHA N, KRISHNAN S, et al. A three-dimensional
free mild reaction conditions[J]. Catalysts, 2020, 10(4): 453-464. Cu (Ⅱ)-MOF with Lewis acid-base dual functional sites for chemical
[65] ZANON A, CHAEMCHUEN S, MOUSAVI B, et al. Zn-doped fixation of CO 2 via cyclic carbonate synthesis[J]. Journal of CO 2
ZIF-67 as catalyst for the CO 2 fixation into cyclic carbonates[J]. Utilization, 2020, 39: 101173-101180.
Journal of CO 2 Utilization, 2017, 20: 282-291. [75] KIM G H, KURISINGAL J F, GU Y J, et al. CAU-11-COOH with a
[66] KURISINGAL J F, RACHURI Y, GU Y, et al. Binary metal-organic V-shaped linker as a catalyst for the solvent-free synthesis of cyclic
frameworks: Catalysts for the efficient solvent-free CO 2 fixation carbonates from CO 2 and epoxides[J]. Journal of Nanoscience and
reaction via cyclic carbonates synthesis[J]. Applied Catalysis A: Nanotechnology, 2020, 20(2): 752-759.
General, 2019, 571: 1-11. [76] NOH J, KIM Y, PARK H, et al. Functional group effects on a
[67] WU Y F, SONG X H, XU S Q, et al. Chemical fixation of CO 2 into metal-organic framework catalyst for CO 2 cycloaddition[J]. Journal
cyclic carbonates catalyzed by bimetal mixed MOFs: The role of the of Industrial and Engineering Chemistry, 2018, 64: 478-483.
interaction between Co and Zn[J]. Dalton Transactions, 2020, 49(2): [77] DEMIR S, USTA S, TAMAR H, et al. Solvent free utilization and
312-321. selective coupling of epichlorohydrin with carbon dioxide over
[68] KURUPPATHPARAMBIL R R, JOSE T, BABU R, et al. A room zirconium metal-organic frameworks[J]. Microporous and Mesoporous
temperature synthesizable and environmental friendly heterogeneous Materials, 2017, 244: 251-257.
ZIF-67 catalyst for the solvent less and co-catalyst free synthesis of [78] CAI T T, LIU J X, CAO H, et al. Synthesis of bio-based cyclic
cyclic carbonates[J]. Applied Catalysis B: Environmental, 2016, 182: carbonate from vegetable oil methyl ester by CO 2 fixation with
562-569. acid-base pair MOFs[J]. Industrial Crops and Products, 2020, 145:
[69] MOUSAVI B, CHAEMCHUEN S, MOOSAVI B, et al. Zeolitic 112155-112163.
imidazole framework-67 as an efficient heterogeneous catalyst for [79] LIN Y F, HUANG K W, KO B T, et al. Bifunctional ZIF-78
the conversion of CO 2 to cyclic carbonates[J]. New Journal of heterogeneous catalyst with dual Lewis acidic and basic sites for
Chemistry, 2016, 40(6): 5170-5176. carbon dioxide fixation via cyclic carbonate synthesis[J]. Journal of
[70] ZHOU Z, YANG L, WANG Y F, et al. Recent advance on chemical CO 2 Utilization, 2017, 22: 178-183.
fixation of carbon dioxide by metal-organic frame-works as [80] LI B Y, ZHANG Y M, MA D X, et al. Metal-cation-directed de Novo
heterogeneous catalysts[J]. Current Organic Chemistry, 2018, 22(18): assembly of a functionalized guest molecule in the nanospace of a
1809-1824. metal-organic framework[J]. Journal of the American Chemical
[71] KIRCHON A, FENG L, DRAKE H F, et al. From fundamentals to Society, 2014, 136(4): 1202-1205.
(上接第 2405 页) 学版), 2019, 39(4): 77-86.
[55] ALONGI J, POSKOVIC M, FRACHE A, et al. Novel flame
[49] GAO Y A, LI Z H, DU J M, et al. Preparation and characterization of retardants containing cyclodextrin nanosponges and phosphorus
inclusion complexes of β-cyclodextrin with ionic liquid[J]. compounds to enhance EVA combustion properties[J]. Polymer
Chemistry-A European Journal, 2005, 11(20): 5875-5880. Degradation and Stability, 2010, 95(10): 2093-2100.
[50] WANG B B, QIAN X D, SHI Y Q, et al. Cyclodextrin [56] ALONGI J, POSKOVIC M, VISAKH P M, et al. Cyclodextrin
microencapsulated ammonium polyphosphate: Preparation and its nanosponges as novel green flame retardants for PP, LLDPE and
performance on the thermal, flame retardancy and mechanical PA6[J]. Carbohydrate Polymers, 2012, 88(4): 1387-1394.
properties of ethylene vinyl acetate copolymer[J]. Composites Part B: [57] LAI X J, ZENG X R, LI H Q, et al. Synergistic effect of
Engineering, 2015, 69: 22-30. phosphorus-containing nanosponges on intumescent flame-retardant
[51] DING S, LIU P, ZHANG S M, et al. Preparation and characterization polypropylene[J]. Journal of Applied Polymer Science, 2012, 125(3):
of cyclodextrin microencapsulated ammonium polyphosphate and its 1758-1765.
application in flame retardant polypropylene[J]. Journal of Applied [58] ENESCU D, ALONGI G, FRACHE A. Evaluation of nonconventional
Polymer Science, 2020, 137(34): 49001-49014. additives as fire retardants on polyamide 6, 6: Phosphorous-based
[52] WANG B B (汪碧波). Preparation of core-shell microencapsulated master batch, α-zirconium dihydrogen phosphate, and β-cyclodextrin
expanded flame retardants and study on properties of crosslinked based nanosponges[J]. Journal of Applied Polymer Science, 2011,
flame retardant vinyl acetate copolymer[D]. Hefei: University of 123(6): 3545-3555.
Science and Technology of China (中国科学技术大学), 2012. [59] TROTTA F, ZANETTI M, CAVALLI R. Cyclodextrin-based
[53] WANG W, PENG Y, CHEN H, et al. Surface microencapsulated nanosponges as drug carriers[J]. Beilstein Journal of Organic
ammonium polyphosphate with beta-cyclodextrin and its application Chemistry, 2012, 8(1): 2091-2099.
in wood-flour/polypropylene composites[J]. Polymer Composites, [60] FABRIZIO C, MARIA T, ROBERTA C, et al. Evolution of
2017, 38(10): 2312-2320. cyclodextrin nanosponges[J]. International Journal of Pharmaceutics,
[54] WEN Y F (文玉峰), HE P Z (何璞祯), MA X P (马晓谱), et al. 2017, 531(2): 470-479.
Research progress of microencapsulation of flame retardants in flame [61] SHERJE A P, DRAVYAKAR B R, KADAM D, et al. Cyclodextrin-
retardant modification of polymers[J]. Journal of Beijing Institute of based nanosponges: A critical review[J]. Carbohydrate Polymers,
Fashion Technology: Natural Science) (北京服装学院学报: 自然科 2017, 173: 37-49.