Page 199 - 《精细化工》2020年第12期
P. 199
第 12 期 刘俊任,等: 用于盐酸阿霉素释放的多响应性纳米凝胶 ·2561·
delivery tool: Current and future[J]. Artificial Cells Nanomedicine and pH responsive microgel and nanogel[J]. Progress in Organic
and Biotechnology, 2016, 44(1): 165-177. Coatings, 2018, 124: 213-223.
[2] CHEN J J, WU M, VERONIAINA H, et al. Poly(N-isopropylacrylamide) [16] CHENG R, FENG F, MENG F H, et al. Glutathione-responsive
derived nanogels demonstrated thermosensitive self-assembly and nano-vehicles as a promising platform for targeted intracellular drug
GSH-triggered drug release for efficient tumor therapy[J]. Polymer and gene delivery[J]. Journal of Controlled Release, 2011, 152(1):
Chemistry, 2019, 10(29): 4031-4041. 2-12.
[3] HE L H (何丽华), MIN J (闵洁), ZHENG R (郑荣), et al. Synthesis [17] LI Y (李义), SHE Q Y (佘奇英), ZHU H K (朱和康), et al.
and characterization of pH-sensitive dextran hydrogel nanoparticles Synthesis of redox-responsive thiolated chitosan hydrogel with
as a drug delivery system[J]. Fine Chemicals (精细化工), 2020, disulfide cross-links for controlled release of a model protein[J]. Fine
37(3): 494-499. Chemicals (精细化工), 2017, 34(1): 28-33.
[4] HOU X B, PAN Y F, XIAO H N, et al. Controlled release of [18] ZUO Y J, KONG M, MU Y Z, et al. Chitosan based nanogels
agrochemicals using pH and redox dual-responsive cellulosenanogels[J]. stepwise response to intracellular delivery kinetics for enhanced
Journal of Agricultural and Food Chemistry, 2019, 67(24): 6700-6707. delivery of doxorubicin[J]. International Journal of Biological
[5] LIU W (刘慰), SI C L (司传领), DU H S (杜海顺), et al. Advance in Macromolecules, 2017, 104: 157-164.
preparation of nanocellulose-based hydrogels and their biomedical [19] MAHMOODZADEH F, GHORBANI M, JANNAT B. Glutathione
applications[J]. Journal of Forestry Engineering (林业工程学报), and pH-responsive chitosan-based nanogel as an efficient
2019, 4(5): 11-19. nanoplatform for controlled delivery of doxorubicin[J]. Journal of
[6] LIANG L J (梁丽君). Stimuli-responsive polymer nanohygels for Drug Delivery Science and Technology, 2019, 54: 9-18.
biomedical applications[D]. Nanjing: Nanjing University of Posts [20] ZHANG J (张静), LIN S L (林胜利). The review of cellulose
and Telecommunications (南京邮电大学), 2019. selective oxidation[J]. Journal of Cellulose Science and Technology
[7] ZHANG M (张明), LI Z M (李兆明), CHEN C (陈超), et al. (纤维素科学与技术), 2014, 22(2): 69-77.
Advances of nanogels as protein drug carriers[J]. Food and Drug (食 [21] KASAI W, MOROOKA T, EK M. Mechanical properties of films
品与药品), 2017, 19(5): 57-61. made from dialcohol cellulose prepared by homogeneous periodate
[8] MIZRAHY S, PEER D. Polysaccharides as building blocks for oxidation[J]. Cellulose, 2014, 21(1): 769-776.
nanotherapeutics[J]. Chemical Society Reviews, 2012, 41(7): 2623-2640. [22] SMEDS K A, GRINSTAFF M. Photocrosslinkable polysaccharides
[9] SIMPSON M J, CORBETT B, AREZINA A, et al. Narrowly for in situ hydrogel formation[J]. Journal of Biomedical Materials
dispersed, degradable, and scalable poly (oligoethylene glycol Research, 2001, 55(2): 254-255.
methacrylate)-based nanogels via thermal self-assembly[J]. Industrial [23] DUTTA S, SAMANTA P, DHARA D. Temperature, pH and redox
& Engineering Chemistry Research, 2018, 57(22): 7495-7506. responsive cellulose based hydrogels for protein delivery[J].
[10] HAJEBI S, RABIEE N, BAGHERZADEH M, et al. Stimulus-responsive International Journal of Biological Macromolecules, 2016, 87: 92-100.
polymeric nanogels as smart drug delivery systems[J]. Acta [24] GAO D D, DUAN L L, WU M, et al. Preparation of thermo/redox/
Biomaterialia, 2019, 92: 1-18. pH-stimulative poly (N-isopropylacrylamide-co-N,N′-dimethylaminoethyl
[11] KUMAR P, LIU B, BEHL G. A comprehensive outlook of synthetic methacrylate) nanogels and their DOX release behaviors[J]. Journal
strategies and applications of redox-responsive nanogels in drug of Biomedical Materials Research Part A, 2019, 107(6): 1195-1203.
delivery[J]. Macromolecular Bioscience, 2019, 19(8): 28-36. [25] MACIEL D, FIGUEIRA P, XIAO S L, et al. Redox-responsive
[12] RAHIMIAN K, WEN Y F, OH J K. Redox-responsive cellulose-based alginate nanogels with enhanced anticancer cytotoxicity[J].
thermoresponsive grafted copolymers and in-situ disulfide crosslinked Biomacromolecules, 2013, 14(9): 3140-3146.
nanogels[J]. Polymer, 2015, 72: 387-394. [26] WANG J, WU W, ZHANG Y J,et al. The combined effects of size
[13] QIAO Z Y, ZHANG R, DU F S, et al. Multi-responsive nanogels and surface chemistry on the accumulation of boronic acid-rich
containing motifs of ortho ester, oligo (ethylene glycol) and disulfide protein nanoparticles in tumors[J]. Biomaterials, 2014, 35(2): 866-878.
linkage as carriers of hydrophobic anti-cancer drugs[J]. Journal of [27] WU Y Z, LI H F, RAO Z Q, et al. Controlled protein adsorption and
Controlled Release, 2011, 152(1): 57-66. delivery of thermosensitive poly (N-isopropylacrylamide) nanogels[J].
[14] LI H (李欢),LUO J X (罗建新), ZHU D Y (朱东雨), et al. Journal of Materials Chemistry B, 2017, 5(39): 7974-7984.
Synthesis and characterization of hydroxypropyl cellulose grafted [28] PAN Y F, WANG J C, CAI P X, et al. Dual-responsive IPN hydrogel
thermosensitive poly (N-isopropylacrylamide) hydrogel by RAFT based on sugarcane bagasse cellulose as drug carrier[J]. International
polymerization[J]. Fine Chemicals ( 精细化工 ), 2010, 27(10): Journal of Biological Macromolecules, 2018, 118: 132-140.
968-976. [29] KARIMI M, GHASEMI A, ZANGABAD P S, et al. Smart
[15] STULAR D, TOMSIC B, JERMAN I, et al. Comparison of micro/nanoparticles in stimulus-responsive drug/gene delivery
responsive behaviour of smart PLA fabrics applied with temperature systems[J]. Chemical Society Reviews, 2016, 45(5): 1457-1501.